Short communication

Rhizoctonia solani Kühn AG 2-1 on kohlrabi in Italy

Luciana Corazza¹, Curgonio Cappelli², Laura Luongo¹ and Vittorio M. Stravato³

- ¹ Istituto Sperimentale per la Patologia Vegetale, Via C.G. Bertero 22, 00156 Roma, Italy
- ² Istituto di Patologia Vegetale, Facoltà di Agraria, Università di Perugia, Borgo XX Giugno, 06100 S. Pietro (Perugia), Italy
- ³ Peto Italiana, Centro Ricerche di Latina, via Canneto di Rodi, 04010 Borgo Sabotino (Latina), Italy

Accepted 14 November 1994

Key words: anastomosis groups (AGs), pathogenicity, Cruciferae

Abstract

Rhizoctonia solani AG 2-1 was recorded in Central Italy on kohlrabi plants showing root and stem rot. After artificial inoculation the fungus caused damping-off of 7-day-old seedlings and root and stem rot of 4-month-old plants developed after 15 days of incubation. This seems to be the first record of R. solani AG 2-1 on kohlrabi.

A severe unusual disease of kohlrabi (*Brassica oleracea* conv. *acephala* (DC) Alef. var. *gongy-loides*) was recorded during the period 1989–1992 in Latina province, in Central Italy. Kohlrabi plants showed root and stem rot, during the spring at harvest time, with losses of 20% [Stravato and Cappelli, 1994].

Explants from root samples of infected plants were cut aseptically, incubated at 26 ± 2 °C, in the dark, on PDA (Potato Dextrose Agar, Oxoid), pH 6.5. A fungus, identified as *Rhizoctonia solani* Kühn [teleomorph: *Thanatephorus cucumeris* (Frank) Donk] on the basis of its morphological characteristics and determination of multinucleate condition in vegetative hyphal cells using Giemsa staining procedure [Herr, 1979; Burpee *et al.*, 1980], was isolated from almost 80% of the explants.

Anastomosis group (AG) of R. solani was determined by pairing the isolate with the tester strains of AG 1-IA, AG 1-IB, AG 1-IC, AG 2-1, AG 2-2IIIB, AG 2-2IV, AG 3, AG 4, AG 5 and AG 6 [Tu et al., 1969; Sneh et al., 1991]. Mycelial disks (7 mm in diameter) were cut from the margins of actively growing cultures on PDA and

planted 3 cm apart on microscope slides coated with 2% water agar (WA).

Fusions between isolates were observed and occurred at a low frequency only with the AG 2-1 tester strain ATCC 66154, isolated from pea from Japan; no anastomosis was observed with the other tester strains.

The best growth of *R. solani* isolated from kohlrabi was at 25 °C, the same optimum temperature being recorded for the AG 2-1 tester isolate. Appearance in culture of *R. solani* strain isolated from kohlrabi and the AG 2-1 tester isolate was similar (mycelium reddish brown, sclerotia small, rare to moderate, colour similar to mycelial colour).

Pathogenicity tests were carried out under controlled conditions (22 ± 2 °C), on plants of kohlrabi (cv Express Forcer F1); 60 plants were transplanted after 15 days in plastic boxes (30×25 cm) containing 5% v/v of inoculum, obtained by culturing R. solani at 25 °C for 14 days on a medium based on maize flour and sand [Nene et al., 1981]; controls contained sterilized soil without inoculum. Healthy roots of 4-month-old plants were also inoculated; they were superfi-

cially sterilized with 95% ethanol and a wound made aseptically with a corkborer (5 mm in diameter); a mycelium disk of the same diameter was taken from a 10-day-old agar culture and placed in the wound; a disk of agar was used for control plants. R. solani caused damping-off of the seedlings within 7 days, while root and stem rot was observed after 15 days when plants of 4 months were inoculated.

R. solani AG 2-1 is distributed worldwide and comprises slow growing isolates that are pathogens of winter crops, forming reddish sclerotia in rings [Ogoshi, 1975]. Some pathogenic isolates of the fungus cause 'damping-off' of crucifers [Watanabe and Matsuda, 1966], 'bud rot' of strawberry [Tominaga et al., 1966], 'leaf blight' of tulip [Nakatomi and Kaneko, 1971], 'root rot' of Japanese radish [Homma and Ishii, 1984] and subterranean clover [Wong et al., 1985]. From the literature consulted, this seems to be the first record of R. solani AG 2-1 on kohlrabi.

The determination of anastomosis affinity of *R. solani* is an important taxonomic tool; furthermore it represents an useful information since anastomosis groups are almost completely genetically isolated and must be taken into account in breeding programmes and choice of rotations.

Acknowledgements

The authors are sincerely grateful to Prof. J. R. Coley-Smith (Department of Applied Biology, University of Hull, U.K.) and to Dr. Gerda Dijst [DLO Research Institute for Plant Protection (IPO-

DLO), Wageni ngen, The Netherlands] for providing the Rhiz joctonia solani AGs.

References

- Burpee LL, Sande TS PC, Cole H Jr and Sherwood RT (1980)
 Anastomosis & groups among isolates of Ceratobasidium cornigerum and d related fungi. Mycologia 72: 688-701
- Herr LJ (1979) Practical nuclear staining procedures for Rhizoctonia-li ke fungi. Phytopathology 69: 958-961
- Homma Y and Ishii M (1984) Anastomosis groups of Rhizoctonia s olani Kühn responsible for various symptoms of the root root of Japanese radish. Bull Shikoku Agric Exp Sta 42: 1-.11
- Nakatomi Y and Kaneko H (1971) Ecology and control of leaf blight of tulip. Plant Prot Japan 25: 191-194
- Nene YL, I Iaware HP and Reddy V (1981) Chickpea disease resistan (ce screening and techniques. ICRISAT Inf Bull 10: 1-9
- Ogoshi A (1975) Grouping of Rhizoctonia solani Kühn and their perfect stages, Rev Plant Prot Res Japan 8: 98-103
- Sneh B., Burpee L and Ogoshi A (1991) Identification of octonia species. APS Press. The American Phytopath lological Society. St Paul, Minnesota, USA, 82-83
- Stravai lo VM and Cappelli C (1994) Attacchi di Rhizoctonia soi lani Kühn su cavolorapa in Italia. Inf Fitopat 44(10): 52 .-54
- Tomi
 s maga T, Sugimoto T and Takahashi S (1966) Bud rot of
 trawberry in semi intensive cultivation (new disease).

 I Plant Prot Japan 20: 168-172
- Tu' OC, Roberts DA and Kimbrough JW (1969) Hyphal fusion, nuclear conditions and perfect stages of three species of Rhizoctonia. Mycologia 61: 775-783
- W: atamabe B and Matsuda A (1966) Studies on the grouping of Rhizoctonia solani Kühn pathogenic to upland crops.
 A ppointment experiment (Plant and Insect Pests, in Ja panese) 7: 1-131
- V Wong 3 DH, Barbetti MJ and Sivasithamparam K (1985)
 Pi thogenicity of Rhizoctonia spp. associated with root of
 su ibterranean clover. Trans Brit Mycol Soc 85: 156-158